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( 2 Detailed Summary of Technical Results

2.1 Overview and Background

-5 The main charter of this contract is the implementation and experimentation with motion
planning algorithms that emphasize the exact combinatorial and purely geometriapc

cortion planning is considered to be one of the m, ;or research areas in robotics, and is

one of the main stages in the design and implementation of autonomous intelligent systems,
which is an important long range goal in robotics research. Motion planning is one of the
basic capabilities that such ,t system must possess. In purely geometric terms, the simplest
version of the problem can be stated as follows. The system is given complete information

about the geometry of the environment in which it is to operate (and of its own structure),
and has to process it so that, when commanded to move from its current position to some

target position, it can deterfiine whether it can do so without colliding with any of the
obstacles around it, and if so plan (and execute) such a moto

There are many variants of the problem. A few of th2ýeare: motion planning in

environments that are only partially known to the syste2 xcompliant motion planning that
allows contact with obstacies, which might be ui1 voidable due, to measurement errors,
optimal motion planning, motion planning with 7kino-dyuamic< constraints, and motion
planning amidst moving obstacles.-, Still, even the simplest, st.Atic, and purely geometric
version stated above is far from being simple, and.ptoses serious challenges in the design of

efficient and robust algorithms. , - ( gi) (-

Theoretical studies of motion planning have been abundant in the past decade, and the
Principal Investigator has been involved with many of them. It was shown that the main
parameter that controls the computational complexity of the problem is the number k of
degrees of freedom of the system. When k is arbitrarily large (e.g. in coordinated motion
planning of many independent bodies), the problem usually becomes computationally in-
tractable [8, 9]. There are several general techniques (one by Schwartz and Sharlr [16] and
a more recent and more efficient one by Canny [4]) that have been derived for solving the
problem for arbitrary systems, but their worst case running time is exponential in k, and
even for available commercial systems with k = 6 degrees of freedom, these algorithms are
very complex and unacceptably inefficient for practical use.

This situation has caused subsequent research to proceed in two divergent directions.
One was to abandon the exact algorithmic approach and design heuristic and approximating
techniques in which the geometry of the space of available placements of the systen, is not
computed accurately but only coarsely approximated, o," is "bypassed" by other heuristic
techniques. The resulting systems are generally not robust -- they might miss free motions
and declare incorrectly the desired destination as unreachable. Moreover, even with the
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heuristic shortcuts, these systems are still inefficient., and most of themn perform well (within
the above mentioned limitations) only on 'toy' examples consisting of only a few obstacles.

The other approach was to continue to cling to the exact combinatorial algorithmuic
paradigm, but begin by attacking problems with a small number of degrees of freedom,
analyze them thoroughly, and develop efficient algorithms whose worst-case running time
is even better than that of the general technique of Canny. This approach, which is the one
followed in our research, is a 'bottom-up' approach, that Lims to solve simpler systeins first,
in the hope that these solutions will be usable as routines in the solutions ai muore general
problems. Moreover, this approach leads to better understanding of the combinatorial
structure of the space of free system placements, and can therefore result in solutions that
are faster than those yielded by benristic tcchniq.ucs.

Although many motion planning problems with very few degrees of freedom are not very
realistic, some of them do correspond to problems that can arise in practice. For example,
the problem involving a rigid polygonal object moving in the plane amidst a collection of
polygonal obstacles is actually the problem of navigating a robot vehicle, and has only three
degrees of freedom. Navigating a circular robot has only two degrees of freedom. These
problems have been successfully attacked by the exact algorithmic t2chnique, and a battery
of efficient techniques for their solutions has been developed (see [15], [10], [13], [11], [7])
Some of these solutions have in fact been implemnented and tested (see e.g. [12], and also
[3]), although no real production system has resulted from these experiments, as far as we
know.

In the present research we have chosen another class of problems involving three degrees
of freedom and have the potential of being applicable in real-Life problems. This class
involves a rigid object flying through 3-dimensional space, by translation only, amidst a
collection of polyhedral obstacles (which are static, and whose geometry is known to the
system, as in our basic assumptions made above). In full generality, the flying motion of
a rigid object in 3-space involves 6 degrees of freedom (with rotation) and is too complex,
in the present state of the field, for exact and practical algorithmic solution. The case of

allowing only translations can still be used in practice in several ways: (i) If the size of
the moving object is much smaller than the sizes of the obstacles, we can approximate the
object by a point, which has only the three degrees of freedom of translation. (6) If the
moving object has a generally rounded shape, we can approximate it by a moving ball, again
with only three degrees of freedom. (iii) We can use the solution for translational motion

planning to obtain an approximate solution of the general problem, by discretizing over the
range of available orientations, solve the purely translational problem for each orientation,
and look for pmely rotational passages between adjacent orientations; this techniqu.e has
been recently proposed for planar motions in [1], and it seems applicable to 3-dimepsional
problems as well.

This problem has already been discussed in a pioneering paper on algorithmic motion

planning [14] 11 years ago. However, no analysis, nor even any consideration of algorithmic
efficiency, has been provided there. Recently the problem has been studied and analyzed
in several papers. The case of a moving point has been studied in [5]. It was shown
there that if the polyhedral obstacles consist of n faces and r convex edges (that is reflex

edges from the point of view of free space), then the free space can be decomposed into

O(n + r2 ) tetrahedra, in time O(nr + r2 log n). Hlaving this decomposition available in the
form of a 'connectivi i graph', whose vertices are these tetrahedra and whose edges connect
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pairs of adjacent tetrahedra, facilitates a reduction of the motion planning problem to a
simple (and discrete) path searching problem in that graph. The solution given iii [5] is
slightly complicated and requires the use of a few sophisticated algorithmic techniques. A
generalization of the problem to the case of an arbitrary translating polylhedral object has
been studied in [2], which showed that the complexity of a single connected component of
the free configuration space is at most 0(n'/'), which is a significant improvement over
the naive (and worst-case tight) 0(n3 ) bound on the complexity of the entire configuration
space. Note that a single component of the free configuration space, namely the one that
contains the starting position of the robot, is all we need, because all placements reachable
from this starting position must necessarily lie in that component. The paper [2] also
presents a rather complicated and randomized algorithm to compute a single component
in time that is close to 0(n 7 / 3 ). We note that this bound is believed not to be tight, and
it is conjectured that the true bound is very close to quadratic in n. This is a very hard
theoretical problem that we are also investigating as part of the current research, but a
definitive solution has not yet been obtained.

2.2 System Description

The implementation of our 3-d motion planning system is being carried out by a full-time
programmer (Ms. Estarose Wolfson) at the Robotics Lab of the Courant Institute at New
York University. Currently, the implementation of the simple case of a moving poirt has
been completed. and testing araid emperimnentatinn is Aon,,t to begin Tn the second year
of research we plan to extend the system to handle the two cases of a flying ball and of a
general flying polyhedral object.

A major principle in the system design was to implement a system whose worst case
running time matches the best available theoretical solutions (in our case, that of [51),
but to trade sophisticated algorithmic techniques by simpler methods whenever possible
(without hurting the overall asymptotic running time). To underscore this point, it should
be noted that implementing geometric algorithms for 3-d problems is a fairly tedious task.
Several basic problems that arise have been given efficient theoretical solutions, but their
implementation is very complicated and troublesome. As an illustration, consider the spatial
point iocation problem, which arises a lot in our implementation. A simple version of the
problem asks to determine, for an arbitrary query point, the obstacle face it 'sees' directly
above it. There are several recent efficient techniques for solving this problem, but they
are very cumbersome to implement. In our system we have used a simpler solution that
proceeds by traversing faces of the obstacles in a certain order until the one lying directly
above the point is found. This method is very simple to implement, and its total cost turns
out in our case to be within the allowed theoretical bound. This policy has been followed
in all other steps of our algorithm.

Here is a brief sketch of the structure of our system.

OBJECTIVES and TERMINOLOGY: Given any two points in 3-space and a set of
polyhedral obstacles having a total of N faces, we wish to determine whether there is a
p,.th between these points (avoiding intersections with the obstacles) and if so find one such

apth. This is the motion planning problem of moving a point through a three dimc isional
space consisting of non-overlapping obstacles. To do this, the complementary space of the
obstacles (with respect to some large imaginary enclosing box), called the fre, space, is
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decomposed into convex units (cells), which form the nodes of a connc':tivity grTYph whose
edges connect pairs of adjacent cells. These cells have walls consisting of z-vertical planar
faces and top and bottom 'covers' each consisting of facets fron, a unique obstacle. Thus
these basic cell units and the connectivity among them will allow us to travel through
free space to reach our destination, provided it lies in the same connected component of
free space as our initial position (which is the same as belonging to the same connected
component of the connectivity graph). Our program will be later extended to 'iclude the
case of a moving ball and an arbitrary 3-D polyhedral object moving (by translation only)
through the environment.

The general technique, as developed in [5], [21, and others, is to construct a vertical
cell decomposition of the free space. Such a decomposition is obtained by erecting vertical
walls up and down from cach reflex obstacle edge (i.e. an edge whose dihedral angle within
the free space is greater than 180 degrees). These walls are extended until they hit other
obstacle faces (or, failing this, to irnfinity). Collectively, they partition free space into convex
subcells of the form discussed abowe, and their adjacency through the vertical walls gives
us the desired connectivity graph.

We have modified this method so that wails are erected only from full reflex edges,
which are edges e with the property that the vertical plane passing through e is such that the
obstacle containing e lies (locally) only on one side of the plant. This coarser decomposition
yields celis that are only "z-convex", meaning that any z-vertical line intersects such a cell
in a connected segment. It is still relatively easy to navigate through such a cell, and in
prac•tiLc liLe bitI V•anL Sh' CoUa'tijeU" e i eZ2XpecteU to be siglIIILnULILc . We deVn2oteL.W by Ir Lhe

total number of reflex edges and by R the number of full reflex and inverse reflex edges
(defined in analogy to reflex edges except that the free space lies locally on one side of the
vertical plane through the edge). As an illustration, suppose we have a spherical obstacle,
which we approximate as a convex polyhedron with k edges. In this case we have r = k
(every edge is reflex), but R is only proportional to -Ak. This indicates that our coarse
decomposition can be expected to be much more efficient in practice.

A key concept in our method is that of obstacle silhouettes. Informally, these are loci
of points on the obstacle boundaries where the z-vertical cross section of the obstacle has
a discontinuity. Such a silhouette consists of a connected closed cycle of full reflex obstacle
edges, inverse reflex edges, or a combination of such edges. The silhouettes contain most
of the information necessary to achieve our coarse cell decomposition, and the total size of
all silhouettes is only proportional to R and not to N, again implying significant savings in
practice (and theory).

In addition, we use the notion of half reflex edges, which are all the remaining reflex
edges, whose two adjacent faces lie on opposite sides of the vertical plane passing through
the edge. Thus, if we were to erect verticall walls from such an edge (which we do not), the
wall would extend only upwards or only downwards into free space. Half reflex edges are
used in the later stages of the program to plan passages through the resulting cells.

The input to the system consists of the obstacles. These are arbitrarily complex 3-d
polyhedra, that may have holes, tunnels, handles, etc. We assume that they are given by
their boundary representation, where each face is already triangulated, and comes with its
outward-directed normal vector. A later stage of our implementation will aim to obtain
the input directly from CAD data bases or other large data bases through appropriate
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interfaces.

METHOD and PROGRAM:

For lack of space, we only give a very brief outliive of the systeiii: A more detailed
description is given in a forthcoming technical report.

(1) We calculate the obstacle silhouettes by a breadth first search on the vertices and edges
of each obstacle, and connect them locally into al propriate lists.

(2) We next find the "critical points" of the silhouette interactions by performing, a p!anar
sweep along the x direction on the xy-projections of the silhouettes. The critical points
are the x minimum and maximum points of the branches of the silhouettes, the midpoints
where tunnel holes change from being inside to outside the obstacle (inverse to reflex edges
of silhouette) and vice-versa, and the intersection points of two projected silhouettes whose
obstacles are adjacent in the z-direction of 3-space. The running time of this stage is
O(N + (R + S) log X), where X < R is the number of chains and S < R2 is the number of
intersections between them.

During the sweep we need to compute the z coordinate of a point on some surface whose
x, y coordinates are specified. This is a step that is usually accomplished by point location
techniques that have been recently developed (see e.g. [6]). Since these techniques are
rather involved, we replaced them by a simpler tumbling technique, which finds the desired
point by tracing a path along the surface from a known point (on its silhouette) towards the
desired point, crossing the triangular faces of the surfaces in order until the desired point
is `r, eahed. Tu"mbling appeals to be expeniivu, but iattually r-equircd only for locatlng
x-minimum critical points of cells (the first points of the x-monotone chains), which makes
its cost lie well within the allowed theoretical bound. The cost of this step is O(NX) iin the
worst case.

(3) For each cell silhouette we complete the construction of the z-vertical walls erected
from the silhouette edges. For this we need to find their top and bottom intersections with
the obstacles by 'tumbling' along the path of the chain of edges of the silhouette from one
critical point to another, knowing that between any two critical points the z neighbor above
(and below) the edge will remain on the same obstacle patch. The cost of this step is at
most O(NR).

(4) We are now in a position to actually construct our celld and the connectivity between
them. We split each chain of reflex edges at its critical points, and then recombine the
resulting chain fragments (and the vertical walls attached to them) to form the contours
of new coherent cells. The recombination is done locally around each critical point, by
attaching chain fragments and their walls to adjacent fragments-and-walls meeting them at
this point, and by determining locally the geometry of the resulting incident cells. The step
is implemented as a simple traversal of the split chains with appropriate 'jumps' between
them at the critical points, and its cost is shown to be O(NR).

(5) The cells just produced are "z-convex" -- any vertical line intersects such a cell in a
connected interval, but their xy-projections can still have an arbitrary polygonal shape. The
next step decomposes our cells further into "more convex" subcells, each being z-convex and
having a convex xy projection. This is achieved by an appropriate planar sweep through
the xy projection of each cell, and can be done in total time O(NR).

(6) Next we find certain actual paths through the cells. These paths connect some center
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point within each cell to entry / exit points on the vertical walls separating the cell from
,adjacent ones. To do this, we pass a vertical plane through tile center point 7) and some
entry/exit point q, and trace the intersections of this plate with the top and bottom covers
sinlultaneously, using our tumbling method Our strategy is to remain always at mid-
height between the current top and bottom faces. We thus obtain a polygonal path wnose
zy-projection is a striaght segment. We colkct all these paths and store thcm in a data file,
to be used by the final motion planning phase. With sonic care, tile cost of this step can
also be made O(NR).

(7) The Motion planning phase: Finally, given a source point p and a target point q,
we want to determine whether there exists a free path between p and q, and, if so, produce
such a path. For each of the points p, q, we find the cell containing the point or indicate
that the point is not in free space (in which case no Motion planning has to be done). For
points in free space, let c1 , c2 denote the cells containing p and q respectively. We also find
the path from p to the center of cl and from the center of c2 to q. We next test if these two
cells are in the same connected component of our connectivity graph. If this is the case,
we fin)d a path in the graph connecting c, and c2 by a simple breadth first search. We then
construct the actual path from p to q by concatenating the subpaths from p to the center
of cl, from the center of each cell to an exit point on the vertical wall separating it from the
next cell, from that point to the center of the next cell, and !inally from the center of c2 to
q. The output of this phase is simply a sequence of points, given by their coordinates, so
that between any two consecutive points the path proceeds along a straight segment. The
r,!nning time of this step, and the size of the output path, are both O(N + R2 ).

The above described programs are all coded and compiled and now contain about 12,000
lines of code including comments. The testing and experimentation stage is about to begin.

2.3 Supplemental Theoretical Research

Besides work on the system proper, we have also continued to work on related problems in
motion planning and in computational geometry. Some parts of this work are closely rele-
vant to the research project, while other parts cover more basic problems in computational
geometry. Among our results that are more relevant to robotics, we mention: improved
bounds and efficient algorithms for certain motion planning problems with three degrees
of freedom (item [7] in the list of publications in Section 3), motion planning amidst mov-
ing obstacles (item [5]), computing force targets for 2-D multifinger frictional grasps [3],
analysis of the complexity of the union of polyhedra in space, upper envelopes of Voronoi
surfaces and their applications in pattern recognition [13], optimal placement problems,
and miscellaneous results in computational geometry, including randomized incremental
construction of Voronoi and Delaunay diagrams [17], efficient techniques for ray and circle
shooting in polygonal regions [1,2,10,11], improved techniques for output-sensitive hidden
surface removal [14], geometric location problems in the plane [13,15], and applications of a
new space partitioning technique [16]. A bibliography of the publications that acknowledge
support by the grant (in which these references appear) is given, in Section 3 below.
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problems, submitted to J. Cornpitationol Geometry.

3. J.T. Schwartz and M. Sharir, Finding effective 'force targets' for two-dimensional
multifinger frictional grips, accepted for Algorithmnica.

4. Mi. Sharir, k-sets and random hulls, submitted to Gormbinatorica.

5. J. Reif and M. Sharir, Motion planhnin in the nresencce of novimng ohstacles, revised
version, submitted to J. ACM.

6. J. Pach and M. Sharir, Repeated angles in the plane and related problems, accepted
for J. Combinatorial Theory, Ser. A.

7. D. llalperiv and M. Sharir, Improved combinatorial bounds and efficient techniques
for certain motion planning problems with three degrees of freedom, submitted to J.

Computational Geometry.

8. B. Chazedle, 11. Edelsbrunner, L. Guibas, M. Sharir and J. Snoeyink, Computing a
single face in an arrangement of line segments, in preparation.

9. P.K. Agarwal and M. Sharir, Off-line dynamic maintenance of the width of a planar
point set, in preparation.

10. B. Chazelle, tI. Edelsbrunner, M. Grigni, L. Guibas, J. ilershberger, M. Sharir and J.
Snoeyink, Ray shooting in polygons using geodesic triangulations, in preparation.

11. L. Guibas and M. Sharir, Triangulations with low crossing number, in preparation.

12. P.K. Agarwal and M. Sharir, Planar geometric location problems, in preparation.

13. D. Iluttenlocher, K. Kedem and M. Sharir, The upper envelope of Voronoi surfaces
and its applications, in preparation.

14. M. Katz and M. Sharir, Improved output sensitive hidden surface removal for objects
with small union size, in preparation.
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15. N. Naor and M. Sharir, Computing the center of a point set in thre, dimensions, in
preparation.

16. P.K. Agarwal and M. Sharir, Applications of a new space partitioning technique,, ill

preparation.
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tions: Theory and practice, in preparation.
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York University, December 1989.

3.3 Honors
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4 Description of Research T-ansitions and DoD Interac-

tions

None so far.
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b Description of Software and Hardware Prototypes

Please see Section 2 for a detailed description of the system being implemented. It is
coi.ceivable that the system could be commercialized. Likely 'customers' might be the space
industry (for programming flying robots), and CAD and related systems (enhancing such a
system with navigation capabilities through 3-D scenes). However, these are longer-range
issues, given that the system is not complete yet.
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